M – 4D MATERIALS AND ADDITIVE TECHNOLOGIES

The material focus in MEP drives research towards a new frontier of material science in 4D Materials. The unique aspect is that 4D Materials, i.e. materials with temporal property variation, driven by external or internal stimuli, encompass not only smart/functional/shape-morphing solid materials but also explicitly include fluid, particulate, multi-phase and phase-transforming materials. The main research thrust is towards microscopic materials design from comprehensive digital multi-scale and multi-fidelity virtual model of hypothetical materials and their transformations in applications, such as in energy conversion, biotechnology, and manufacturing processes. MEP comprehensively addresses design and optimization of 4D Materials by means of including the material transformation through process by passive or active response to internal or external process stimuli into the optimization cycle. Artificial-intelligence enhanced knowledge-based models and simulations are enabling elements for targeted material design from the molecular level throughout the entire scale range. 4D Materials directly connect with additive technologies and the design of material through process, where process driven property transformations of materials unlock new product design dimensions, including additive technologies for hybrid organic-inorganic compounds.